If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+32x+116=0
a = 1; b = 32; c = +116;
Δ = b2-4ac
Δ = 322-4·1·116
Δ = 560
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{560}=\sqrt{16*35}=\sqrt{16}*\sqrt{35}=4\sqrt{35}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(32)-4\sqrt{35}}{2*1}=\frac{-32-4\sqrt{35}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(32)+4\sqrt{35}}{2*1}=\frac{-32+4\sqrt{35}}{2} $
| F=P(1+15r) | | 3-2y=11+y | | 5x+3(x-4)=8 | | 1/5(x-7)=1+3x | | 4x-7+5x=3x-11 | | X+1/18=5/9+x-4/6 | | 43/8-15/4p=1/3p+10/3 | | 5+4(3-x)=17 | | 25X^2+4x-19=0 | | 43/8-115/4p=1/3p | | 25X^2-4x-19=0 | | 2x=5=-44-5x | | -4/3n-1=-31/9 | | 5(-7-7x)=-105 | | 8-6(9+4z)z=5 | | (x5=8x4-7x2-56x+6)/(x=8)= | | 3x+21=3x-21 | | -14+7x=x | | r^2/3+10=19 | | 2m2-3=7m= | | X+(x+1)+(x+2)=495 | | X^2+4x-1=17 | | 9x+4=4x | | 1-4x2=-8 | | 9x-4=4x | | x2-6=10 | | 3x2-4=28+x2 | | 6x+8-9x=12-18x+15x-4 | | 5d+3.25=2.25d | | 10x+12=6x+20 | | 2x=8/48 | | 16x-x^2=60 |